Exercise 16

Find the limit or show that it does not exist.

$$
\lim _{x \rightarrow \infty} \frac{1-x^{2}}{x^{3}-x+1}
$$

Solution

Multiply the numerator and denominator by the reciprocal of the highest power of x in the denominator.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{1-x^{2}}{x^{3}-x+1} & =\lim _{x \rightarrow \infty} \frac{1-x^{2}}{x^{3}-x+1} \cdot \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}} \\
& =\lim _{x \rightarrow \infty} \frac{\left(1-x^{2}\right) \frac{1}{x^{3}}}{\left(x^{3}-x+1\right) \frac{1}{x^{3}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{3}}-\frac{1}{x}}{1-\frac{1}{x^{2}}+\frac{1}{x^{3}}} \\
& =\frac{\lim _{x \rightarrow \infty}\left(\frac{1}{x^{3}}-\frac{1}{x}\right)}{\lim _{x \rightarrow \infty}\left(1-\frac{1}{x^{2}}+\frac{1}{x^{3}}\right)} \\
& =\frac{\lim _{x \rightarrow \infty} \frac{1}{x^{3}}-\lim _{x \rightarrow \infty} \frac{1}{x}}{\lim _{x \rightarrow \infty} 1-\lim _{x \rightarrow \infty} \frac{1}{x^{2}}+\lim _{x \rightarrow \infty} \frac{1}{x^{3}}} \\
& =\frac{0-0}{1-0+0} \\
& =0
\end{aligned}
$$

